fbpx
Artificial Intelligence

Targeted artificial ocean cooling to weaken tropical cyclones would be futile

  • Moore, JC et al. Atlantic hurricane surge response to geoengineering. Proc. Natl Acad. Sci. USA 11213794–13799 (2015).

    CAS Article Google Scholar

  • Jones, AC et al. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun. 8https://doi.org/10.1038/s41467-017-01606-0 (2017).

  • Jones, AC et al. Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering. Earth Future 6230–251 (2018).

    Article Google Scholar

  • Irvine, P. et al. Halving warming with idealized solar geoengineering moderates key climate hazards. Nat. Climate Change 9295–299 (2019).

    Article Google Scholar

  • Latham, J. et al. Marine cloud brightening. Philos. Trans. R. Soc. A 3704217–4262 (2012).

    Article Google Scholar

  • Ahlm, L. et al. Marine cloud brightening – as effective without clouds. Atmos. Chem.Phys. 1713071–13087 (2017).

    CAS Article Google Scholar

  • Willoughby, HE, Jorgensen, DP, Black, RA & Rosenthal, SL Project STORMFURY: a scientific chronicle 1962-1983. Bull. Am. Meteorol. Soc. 66505–514 (1985).

    Article Google Scholar

  • Robock, A., Bunzl, M., Kravitz, B. & Stenchikov, GL A test for geoengineering? Science 327530–531 (2010).

    CAS Article Google Scholar

  • Robock, A., MacMartin, DG, Duren, R. & Christensen, MW Studying geoengineering with natural and anthropogenic analogs. Clima. Change 121445–458 (2013).

    Article Google Scholar

  • Latham, J. et al. Marine cloud brightening: regional applications. Philos. Trans. R. Soc. A 372 1–11 (2014).

  • MacCracken, MC The rationale for accelerating regionally focused climate intervention research. Earth Future 4649–657 (2016).

    Article Google Scholar

  • Lord, H. United States Patent Application Publication No. 0008155A1. https://patents.google.com/patent/US20020008155A1/en?inventor=herbert+uram&oq=herbert+uram (2002).

  • Kitamura, K. United States Patent Application Publication No. 7832657B2. https://patents.google.com/patent/US7832657B2/en?oq=7%2C832%2C657 (2010).

  • Gradle, R. United States Patent Application Publication No. 8148840B2. https://patents.google.com/patent/US7832657B2/en?oq=7%2C832%2C657 (2012).

  • Tawil, JJ United States Patent Application Publication No. 0038063A1. https://patents.google.com/patent/US20130038063A1/en?assignee=jack+joseph+tawil&oq=jack+joseph+tawil (2013).

  • Bowers, JA et al. United States Patent Application Publication No. 8685254B2. https://patents.google.com/patent/US8685254B2/en?oq=8685254 (2014).

  • OceanTherm: https://www.oceantherm.no/ (2021).

  • Emanuel, KA An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43585–605 (1986).

  • Emanuel, KA The maximum intensity of hurricanes. J. Atmos. Sci. 451143–1155 (1988).

    Article Google Scholar

  • Miller, BI A study of the filling of Hurricane Donna (1960) over land. Mon. Weather Rev. 92389–406 (1964).

    Article Google Scholar

  • Tuleya, RE Tropical storm development and decay: sensitivity to surface boundary conditions. Mon. Weather Rev. 122291–304 (1994).

    Article Google Scholar

  • DeMaria, M., Mainelli, M., Shay, LK, Knaff, JA & Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather forecast. 20531–543 (2005).

    Article Google Scholar

  • Hlywiak, J. & Nolan, DS The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci. 78983–1000 (2021).

  • Cione, JJ & Uhlhorn, EW Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon. Weather Rev. 1311783–1796 (2003).

    Article Google Scholar

  • D’Asaro, EA, Sanford, TB, Niiler, PP & Terrill, EJ Cold wake of Hurricane Frances. Geophys. Gap. Became. 342–7 (2007).

    Google Scholar

  • Chen, S., Elsberry, RL & Harr, PA Modeling interaction of a tropical cyclone with its cold wake. J. Atmos. Sci. 743981–4001 (2017).

    Article Google Scholar

  • Guo, T., Sun, Y., Liu, L. & Zhong, Z. The impact of storm-induced SST cooling on storm size and destructiveness: results from atmosphere-ocean coupled simulations. J. Meteorol. Gap. 341068–1081 (2020).

    Article Google Scholar

  • Shay, LK, Goni, GJ & Black, PG Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 1281366–1383 (2000).

    Article Google Scholar

  • Mainelli, MM, DeMaria, M., Shay, LK & Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather forecast. 233–16 (2008).

    Article Google Scholar

  • Balaguru, K. et al. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl Acad. Sci. USA 10914343–14347 (2012).

    CAS Article Google Scholar

  • Hlywiak, J. & Nolan, D. The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Oceanogr. 491723–1745 (2019).

  • Rudzin, JE, Shay, LK & Cruz, BJDL The impact of the Amazon-Orinoco River plume on enthalpy flux and air-sea interaction within Caribbean sea tropical cyclones. Mon. Weather Rev. 147931–950 (2019).

    Article Google Scholar

  • Powell, M. & Reinhold, T. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88513–526 (2007).

    Article Google Scholar

  • Klotzbach, PJ et al. Surface pressure is a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. Meteorol. Soc. 101E830–E846 (2020).

    Article Google Scholar

  • Miyamoto, Y., Bryan, GH & Rotunno, R. An analytical model of maximum potential intensity for tropical cyclones incorporating the effect of ocean mixing. Geophys. Gap. Became. 445826–5835 (2017).

    Article Google Scholar

  • US Energy Information Administration. April 2022 monthly energy review. Technical Report 4 (US Energy Information Administration, 2022).

  • Ma, Z., Fei, J., Liu, L., Huang, X. & Li, Y. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities. Mon. Weather Rev. 1451181–1201 (2017).

    Article Google Scholar

  • Yablonsky, RM & Ginis, I. Impact of a warm ocean Eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Weather Rev. 141997–1021 (2013).

    Article Google Scholar

  • Feng, EY, Su, B. & Oschlies, A. Geoengineered ocean vertical water exchange can accelerate global deoxygenation. Geophys. Gap. Became. 47e2020GL088263 (2020).

  • Gray, WM Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 96669–700 (1968).

    Article Google Scholar

  • DeMaria, M., Mainelli, M., Shay, LK, Knaff, JA & Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather forecast. 20531–543 (2005).

    Article Google Scholar

  • Kaplan, J. et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather forecast. 301374–1396 (2015).

    Article Google Scholar

  • Foltz, GR, Balaguru, K. & Hagos, S. Interbasin differences in the relationship between SST and tropical cyclone intensification. Mon. Weather Rev. 146853–870(2018).

  • Wadler, JB, Zhang, JA, Rogers, RF, Jaimes, B. & Shay, LK The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air-sea interactions. Mon. Weather Rev. 149245–267 (2021).

    Article Google Scholar

  • Gilford, D. dgilford/pyPI: pyPI v1.3 (initial package release). https://zenodo.org/record/3985975 (2020).

  • Gilford, DM PyPI (v1.3): tropical cyclone potential intensity calculations in python. Geosci. Model Dev. 142351–2369 (2021).

    Article Google Scholar

  • Hersbach, H. et al. ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.6860a573 (2019).

  • Nolan, DS Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst. 31–28 (2011).

  • Onderlinde, MJ & Nolan, DS The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst. 9908–931 (2017).

    Article Google Scholar

  • Lim, JOJ & Hong, SY Effects of bulk ice microphysics on the simulated monsoonal precipitation over east Asia. J. Geophys. Gap. Atmos. 1101–16 (2005).

    Article Google Scholar

  • Zhang, C., Wang, Y. & Hamilton, K. Improved representation of boundary layer clouds over the southeast pacific in ARW-WRF using a modified tiedtke cumulus parameterization scheme. Mon. Weather Rev. 1393489–3513 (2011).

    Article Google Scholar

  • Janjic, Z. Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 43761 (2002).

    Google Scholar

  • Edson, JB et al. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 431589–1610 (2013).

    Article Google Scholar

  • Chen, F. & Dudhia, J. Coupling an advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129569–585 (2001).

    Article Google Scholar

  • Pollard, RT, Rhines, PB & Thompson, RO The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn. 4381–404 (1972).

    Article Google Scholar

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button
    KQ Education Group